
FOSS crypto
JP Aumasson (@veorq)

This talk:

Get you to know common FOSS crypto libs

What they can do for you

Not a howto

Role of crypto libraries and APIs:

Allow you to use third-party code
for crypto protocols and algorithms

“Don’t roll your own crypto implementations”

Many more...

Choosing the right lib is difficult

Define your requirements

Differentiators:

Language
License
Functionality
Algorithms and protocols
API level
Security
Performance

Language:

Most libs written in C(++)

C# and Java for Bouncy Castle

JavaScript libs, pure JS or Emscripten’d

Popular libs already have bindings for most
common languages; you may write your own

License:

Often permissive

OpenSSL: Apache 1.0 and 4-clause BSD
both permissive, no copyleft, not GPL-compatible

mbed TLS: GPLv2 with possible exceptions

NaCl: “Public domain”

LibTomCrypt: WTFPL (Do What the Fuck You Want to PL)

BouncyCastle: MIT (permissive, no copyleft, OSI, GPL compatible)

Crypto++: Boost 1.0 (MIT-like)

Functionality:

Do you need a whole TLS or just an AES?

Or a more specific protocol, like OTR chat?

Algorithms and protocols:

Established standards vs. state-of-the-art
Single algorithm vs. a collection of algorithms

Crypto++: AES, Blowfish, Camellia, CAST-256, DES,
DESX, 3DES, GOST, IDEA, MARS, Panama, RC2, RC4,
RC5, Salsa20, SEED, Serpent, SHACAL-2, Skipjack,
Sosemanuk, Square, TEA, XTEA
in modes CBC, CCM, CFB, CTR, CTS, EAX, GCM, OFB

NaCl: Salsa20, AES-128-CTR

Secure session = key agreement followed by
authenticated encryption

OpenSSL implements most TLS standards,
cipher suites, features and options, etc.

NaCl only implements its custom algorithms,
without all the session establishment

API level:

The fewer choices/freedom/options, the fewer
chances to get it wrong

Example of a high-level API: NaCl

/* key generation */

pk = crypto_box_keypair(&sk)

/* authenticated encryption */

c = crypto_box(m, n, pk, sk)

/* decryption and verification */

m = crypto_box_open(c, n, pk, sk)

Example of a low-level API: OpenSSL

/* RSA key generation */

EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, 2048);

EVP_PKEY_keygen(kctx, &key);

/* omitting generation of a symmetric key... */

/* encrypting one message with AES-256-CBC */

EVP_EncryptInit(&ctx, EVP_aes_256_cbc(), key,
iv); EVP_EncryptUpdate(&ctx, out, &outlen1, in,
sizeof(in)); EVP_EncryptFinal(&ctx, out +
outlen1, &outlen2);

/* (...) */

Security:

Most important criteria: if crypto doesn’t do its
job, why bother?

“Usual” software bugs: logical bugs, memory
corruptions, memory leaks, etc.

Crypto bugs: incorrect implementations,
oracles, timing leaks, fault attacks, etc.

Most of the popular libraries sport complex and non-
intuitive APIs that present the developer with numerous
choices, many of of which are insecure. The result is that
even experienced developers routinely select dangerous
combinations. The visible consequence is a
superabundance of security vulnerabilities in recent
cryptographic software (...)

Matthew Green
https://www.usenix.org/conference/hotsec13/crypto-apis

https://www.usenix.org/conference/hotsec13/crypto-apis
https://www.usenix.org/conference/hotsec13/crypto-apis

OpenSSL:

Many LoCs => more bugs (not good)
Many eyeballs => more bug reports (good)
Often prioritized speed and functionality
Fragile against cache-timing and oracle attacks

NaCl:

Few LoCs, DJB-quality code => fewer bugs
No major bug reported
Only inherently safe primitives
Time-constant, no secret branchings, etc.

Performance (speed):

Sometimes crucial, sometimes unimportant

OpenSSL: fast implementations of algorithms,
CPU-specific, using assembly optimizations

NaCl: choice of fast algorithms, suited for fast
implementations

A closer look at popular and unique libs...

OpenSSL

Obviously

libcrypto, EVP API + command-line toolkit

More than 460,000 lines of code

https://openssl.org https://wiki.openssl.org

https://openssl.org
https://openssl.org
https://openssl.org
https://wiki.openssl.org
https://openssl.org

ASN.1 parsing, CA/CRL management
crypto: RSA, DSA, DH*, ECDH*; AES,
CAMELLIA, CAST, DES, IDEA, RC2, RC4,
RC5; MD2, MD5, RIPEMD160, SHA*; SRP,
CCM, GCM, HMAC, GOST*, PKCS*,
PRNG, password hashing, S/MIME
X.509 certificate management, timestamping
some crypto accelerators, hardware tokens
clients and servers for SSL2, SSL3, TLS1.0,
TLS1.1, TLS1.2, DTLS1.0, DTLS1.2
SNI, session tickets, etc. etc.

*nix
BeOS
DOS
HP-UX
Mac OS Classic
NetWare
OpenVMS
ULTRIX
VxWorks
Win* (including 16-bit, CE)

OpenSSL is the space shuttle of crypto
libraries. It will get you to space, provided you
have a team of people to push the ten
thousand buttons required to do so.

 Matthew Green

I promise nothing complete; because any
human thing supposed to be complete, must
not for that very reason infallibly be faulty.

Herman Melville, in Moby Dick

buffer = OPENSSL_malloc(1 + 2 + payload + padding);

bp = buffer;

*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload);

r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, \

3 + payload + padding);

buffer = OPENSSL_malloc(1 + 2 + payload + padding);

bp = buffer;

*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload);

r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, \

3 + payload + padding);

payload is not the payload but its length (pl is the payload)

Easy to criticize OpenSSL’s code…

Source code and API complex, often confusing

Large codebase, many contributors

Few quality- and security-control processes

Recent effort: https://www.openssl.org/about/secpolicy.html

https://www.openssl.org/about/secpolicy.html

Initiative of the OpenBSD community

Big progress in little time

Portable version and OpenBSD version

libtls library for simpler TLS clients and servers

NaCl (“salt”)

The anti-OpenSSL

High-security and high-speed {primitives, code}

About 15,000 lines of code

http://nacl.cr.yp.to

http://nacl.cr.yp.to
http://nacl.cr.yp.to

975 lines of code!

NaCl is more like an elevator — you just press
a button and it takes you there. No frills or
options.

 Matthew Green

The other side of the coin:

Restricted set of algorithms and functionalities
Limited portability, non-standard build system
Irregularly updated (some bugs remain unfixed)

“a portable, cross-compilable, installable, packageable fork
of NaCl, with a compatible API, and an extended API to
improve usability even further.” https://download.libsodium.org/doc/

Builds on Windows, OS X, iOS, Android, etc.

Bindings for all common languages

Compiled to pure JavaScript: libsodium.js

https://download.libsodium.org/doc/

 prompt_input("a key", (char*)key, sizeof key, 0);

 message_len = prompt_input("a message", (char*)message,
sizeof message, 1);

 printf("Generating %s authentication...\n",
crypto_auth_primitive());

 crypto_auth(mac, message, message_len, key);

 printf("Authentication tag: ");

 print_hex(mac, sizeof mac);

 puts("Verifying authentication tag...");

 ret = crypto_auth_verify(mac, message, message_len, key);

 print_verification(ret);

 sodium_memzero(key, sizeof key); /* wipe sensitive data */

An even more specific library...

libotr

Implements the off-the-record (OTR) protocol

Runs on top of instant messaging systems

https://github.com/off-the-record/libotr https://otr.cypherpunks.ca/

https://github.com/off-the-record/libotr
https://github.com/off-the-record/libotr
https://github.com/off-the-record/libotr
https://github.com/off-the-record/libotr

libotr is not a travesty of confusion and neglect
like openssl. In fact, it shows encouraging signs
of being competently written.

Joseph Birr-Pixton
http://jbp.io/2014/08/28/libotr-code-review/

http://jbp.io/2014/08/28/libotr-code-review/
http://jbp.io/2014/08/28/libotr-code-review/

libotr

Quality code, consistent, commented

Does one thing and does it well

Good security track record

Conclusions

There’s probably a crypto library matching your
needs, no need to write your own

Identify your requirements and search for the
lib that best matches

Prefer high-level to low-level APIs, reduces the
risk of error and the code on your side

Will we move towards
crypto microservices?

Multiple high-level libs for
specific applications, rather
than one low-level lib
misused by developers?

Merci!

List of crypto libs: http://tinyurl.com/cryptolibs

http://tinyurl.com/cryptolibs

